Area of a rectangle

Improper fractions to mixed numbers

Compare and order Fractions greater than 1

Compare and order Fractions

Emma uses the models and her multiplication and division skills to find equivalent fractions.
 Emma uses the same approach to find equivalent fractions for these fractions. How will her method change?
$\frac{4}{12}=\frac{\square}{3}$
$\frac{6}{12}=\frac{\square}{4}$
$\frac{6}{12}=\frac{\square}{2}$

Here are the equivalent fractions she has found for $\frac{4}{8}$:

$$
\begin{array}{ll}
\frac{4}{8}=\frac{8}{16} & \frac{4}{8}=\frac{6}{10} \\
\frac{4}{8}=\frac{2}{4} & \frac{4}{8}=\frac{1}{5}
\end{array}
$$

Does Kim's method work? Explain why.

Problem solving lesson 2
Martin thinks you can only simplify even numbered fractions because you keep on halving the numerator and denominator until you get an odd number.

Do you agree?
Explain your answer.

Here are some fraction cards. All of the fractions are equivalent.
$\frac{4}{A} \frac{B}{C} \frac{20}{50}$
$A+B=16$
Calculate the value of C.

