The sequence of small steps has been produced by White Rose Maths. White Rose Maths gives permission to schools and teachers to use the small steps in their own teaching in their own schools and classrooms. We kindly ask that any other organisations, companies and individuals who would like to reference our small steps wider kindly seek the relevant permission. Please contact support@whiterosemaths.com for more information.

Small Steps Guidance and Examples

Block 1 – Number: Decimals

Year 4 – Yearly Overview

	Week 1	Week 2	Week 3	Week 4	Week 5	Week 6	Week 7	Week 8	Week 9	Week 10	Week 11	Week 12
Autumn	Number – Place Value			Number- Addition and Perimeter Perimeter		Number- Multiplication and Division		Consolidation				
Spring		er- Multip nd Divisio		Measurement - Area	Fractions				Decimals			Consolidation
Summer	≥ Decimals Measurement- Money		Time	Stat	istics	Geomet	ry- Prope Shape	erties of	Geometry- Position and Direction	Consolidation		

Year 4 | Summer Term | Teaching Guidance

Week 1 to 2 – Number: Decimals

Overview Small Steps

Make a whole	
Write decimals	
Compare decimals	
Order decimals	$\left(\right)$
Round decimals	
Halves and quarters	J

NC Objectives

Compare numbers with the same number of decimal places up to two decimal places. Round decimals with one decimal place to the nearest whole number.

Recognise and write decimal equivalents to $\frac{1}{4}$, $\frac{1}{2}$ and $\frac{3}{4}$ Find the effect of dividing a one or two digit number by 10 or 100, identifying the value of the digits in the answer as ones, tenths and hundredths

Make a Whole

Notes and Guidance

Children make a whole from any number of tenths and hundredths.

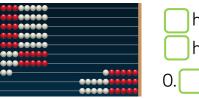
They use their number bonds to ten and a hundred to support their calculations. Children use pictorial and concrete representations to support their understanding.

Mathematical Talk

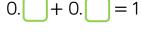
How many tenths make one whole?

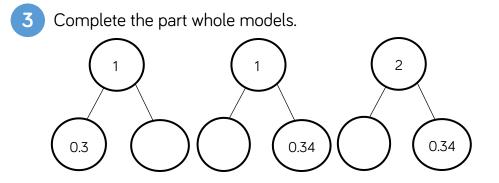
How many hundredths make one whole?

If I have ____ hundredths, how many more do I need to make one whole?

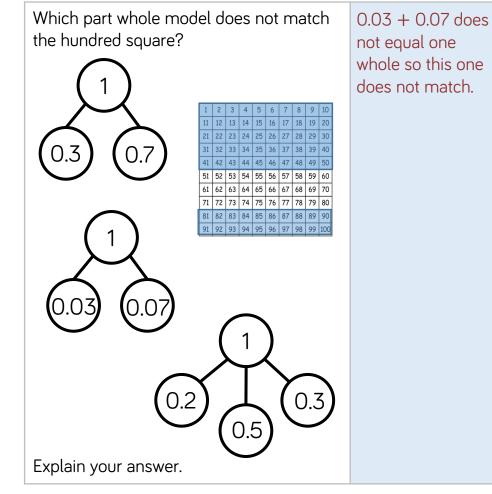

Varied Fluency

Here is a hundred square. How many hundredths are shaded in? How many more hundredths do you need to shade so the whole hundred square is shaded?




hundredths + hundredths = 1 whole

Here is a Rekenrek with 100 beads. Each bead if one hundredth of the whole.


hundredths are on the left. hundredths are on the right.

Make a Whole

Reasoning and Problem Solving

Three bead strings are 0.84 m long altogether.

Would four bead strings be longer or shorter than a metre?

Explain how you know.

One bead string is 28 cm long.

28 cm = 0.28 m

0.84 m + 0.28 m > 1 m

Therefore four bead strings will be longer than one metre.

Write Decimals

Notes and Guidance

Children use place value counters and a place value grid to make numbers with up to two decimal places.

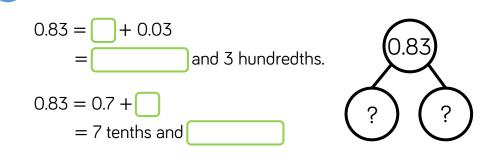
They read and write decimal numbers and understand the value of each digit.

They show their understanding of place value by partitioning decimal numbers in different ways.

Mathematical Talk

How many ones/tenths/hundredths are in the number? How do we write this as a decimal? Why? What is the value of the ____ in the number ____? When do we need to use zero as a place holder? How can we partition decimal numbers in different ways?

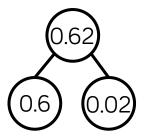
Varied Fluency


What number is represented on the place value chart?

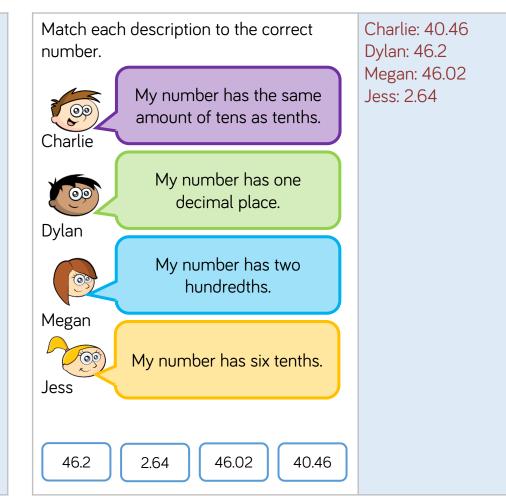
Ones	Tenths	Hundredths	There are ones, tenths and hundredths.	
	•	• • •		
0	1	3	The number is 🦳	

Make the numbers on a place value chart and write down the value of the underlined digit.

3. <u>4</u> 7	2.1 <u>5</u>	0. <u>6</u>	<u>2</u> 5.03	


3 Fill in the missing numbers.

Write Decimals


Reasoning and Problem Solving

Sally says there is only one way to partition 0.62

Prove Sally wrong by finding at least 3 different ways to partition 0.62

0.62 = 0.5 + 0.12 0.62 = 0.4 + 0.22 0.62 = 0.3 + 0.32 0.62 = 0.2 + 0.42 0.62 = 0.1 + 0.520.62 = 0 + 0.62

Compare Decimals

Notes and Guidance

Children apply their understanding of place value to compare decimals with up to two decimal places.

They will consolidate and deepen their understanding of 0 as a place holder and the exchange between one tenth for ten hundredths.

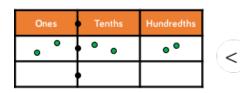
Mathematical Talk

How many tenths does it have? What if you exchanged the one, how many tenths would it have then?

There are ____ tenths and ____ hundredths The number is ____.

_ . ___ is _____ than ___ . ___ because ... Can you use the digit cards to create two numbers which would have the greatest difference?

Varied Fluency



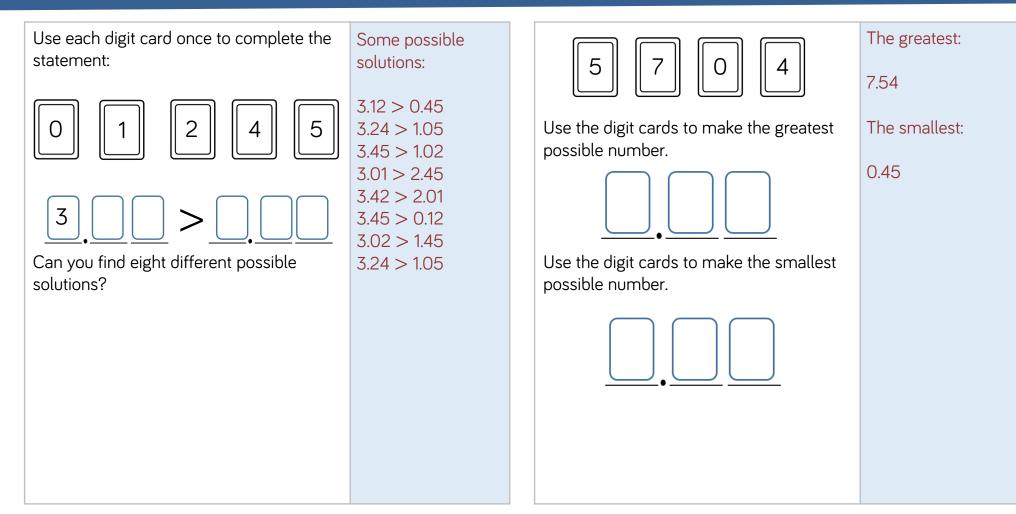
Write the decimals and compare using < or >

Ones	Tenths	Hundredths	
	• • • •	• • •	
	•		

Ones	Tenths	Hundredths	
	•	•	

Complete the place value chart so that the statements are correct.

Ones	Tenths	Hundredths


Fill in the blanks 3

- 3.32 () 3.23
- 0.14 🔿 0.29
- 1.14 () 0.64
- 5.5 () 5.7

- 0.37 < 0. _ 7
- 2.22 > 2. _ 2
- 1. _ 1 > 1. _ 1
- 9.9 < 9.9

Compare Decimals

Reasoning and Problem Solving

Order Decimals

Notes and Guidance

Children apply their understanding of place value to order decimals with up to two decimal places.

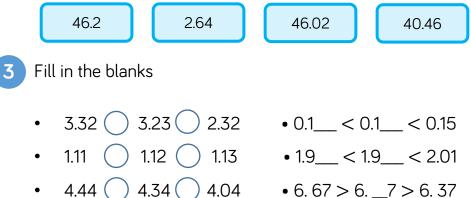
They will consolidate and deepen their understanding of 0 as a place holder, the inequality symbols and language such as ascending and descending.

Mathematical Talk

Which digit do you look at first when ordering decimals?

If two numbers with one decimal place are made with the same digits, will they always be equal? Prove it.

. is than . because ...


Varied Fluency

Write the decimals, then place them in ascending order.

Ones	Tenths	Hundredths	Ones	Tenths	Hundredths
•		•	•		
Ones	Tenths	Hundredths	Ones	Tenths	Hundredths
	\circ	• _• •	• •		

Place the numbers in descending order.

Week 1 to 2 - Number: Decimals

Order Decimals

Reasoning and Problem Solving

Spot the Mistake

Tallulah is ordering some numbers in ascending order:

1.2 < 0.21 < 0.32 < 0.69 < 0.84

Can you explain her mistake?

1.2 is the largest because it has 1 one. Tallulah has ignored the digit in the ones column because the rest of them are in ascending order. Some children have planted sunflowers and they are measuring their heights.

Child	Height
Beth	1.23 m
Tony	0.95 <i>m</i>
Rachel	1.02 m
Kate	1.2 m
Faye	99 cm
Emma	0.97 m

Order the children based on their heights in both ascending and descending order.

Ascending: Tony, Emma, Faye, Rachel, Kate, Beth

Descending:

Beth, Kate, Rachel, Faye, Emma, Tony

Round Decimals

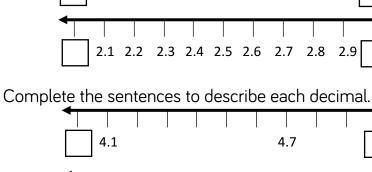
Notes and Guidance

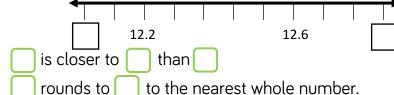
Children round decimals with 1 decimal place to the nearest whole number.

They look at the position of a decimal on a number line to help them see which whole numbers the decimal lies between. Children look at the digit in the tenths column to help understand the rule of whether to round a number up or down.

Mathematical Talk

Which whole numbers does the decimal lie between?


Which whole number is the decimal closer to on the number line? Which column do we focus on when rounding to the nearest whole number?


Which digits in the tenths column round down to the nearest whole number? Which digits in the tenths column round up to the nearest whole number?

Varied Fluency

Which whole numbers do the decimals lie between?

5.1 5.2 5.3 5.4 5.5 5.6 5.7 5.8 5.9

Circle the numbers that round up to the nearest whole number.

4.5 3.7 2.3 4.2 16.8 1.9

Round Decimals

Reasoning and Problem Solving

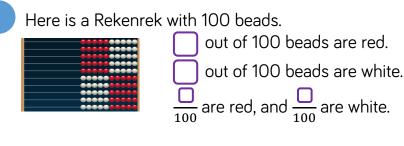
Two numbers with 1 decimal place round to 23 to the nearest whole number. The numbers add together to make 46. What could the two numbers be?	The numbers could be: 22.6 and 23.4 22.7 and 23.3 22.8 and 23.2 22.9 and 23.1	A number with one decimal place rounded to the nearest whole number is 45. What could the number be?	The number could be: 44.5, 44.6, 44.7, 44.8, 44.9, 45.1, 45.2, 45.3 or 45.4
--	--	---	---

Halves and Quarters

Notes and Guidance

Children write $\frac{1}{2}$, $\frac{1}{4}$ and $\frac{3}{4}$ as decimals. They use concrete and pictorial representations to support the conversion.

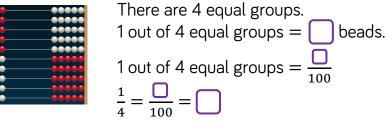
Children use their knowledge of equivalent fractions to write fractions as hundredths and then write the fractions as halves or quarters.


Mathematical Talk

How would you record your answer as a decimal and a fraction?

Can you represent one quarter using decimal place value counters?

Can you represent three quarters using counters on a place value grid?


Varied Fluency

Half of the beads are red and half a white. $\frac{1}{2} = \frac{50}{100} = \frac{5}{10} = 0.5$ so $\frac{1}{2}$ is as a decimal.

The beads are split equally on each side of the Rekenrek.

What fraction is represented by 3 out of the 4 groups? Can you write this as a decimal?

$$\frac{3}{4} = \frac{\square}{100} = \square$$

Halves and Quarters

Reasoning and Problem Solving

Louisa says:

```
If I know \frac{1}{2} is 0.5 as a decimal, I also
know \frac{3}{6}, \frac{4}{8} and \frac{6}{12} are equivalent to 0.5
as a decimal.
```

Explain Louisa's thinking.

Louisa has used her knowledge of equivalent fractions to find other fractions that are equivalent to 0.5

True or False?

$$\frac{1}{2} = 1.2$$
, $\frac{1}{4} = 1.4$ and $\frac{3}{4} = 3.4$

Explain your answer.

False. The numerator and denominator have been placed either side of the decimal point rather than dividing the numerator by the denominator to find the decimal equivalent.